Code No.: 5807

Reg. No.:

M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2024.

Sub. Code: WCHE 23

Second Semester Chemistry – Elective IV BIO INORGANIC CHEMISTRY				(d) Square pyramidal The electronic configuration of iron in oxy haemoglobin is			
			4.				
					$t_{2g}^{-4} eg^2$		g^2
	(For those who joined	in July 2023 onwards)		(c)	t_{2a}^{5}	(d) t_{2g}^{6}	
Time	: Three hours	Maximum: 75 marks	5.			-6	
	PART A — $(15 \times 1 = 15 \text{ marks})$			(a) Hemerythrin (b) Myoglobin			
	Answer AL	questions.			Cytochromes	(d) Haei	i i
	Choose the correct ans	wer:	6.		oxidised form		
1.	The carbonate ion in ligand		-	electron	ic configurati	on	
	(a) bidentate	(b) unidentate		(a)	t_{2g}^{5}	(b) t_{2g}	eg*
	(c) tridentate	(d) hexadentate		(c)	$t_{2g}^{4}eg^1$	(d) t_{2g}^{4}	eg²
2.	The electronic configuration B ₁₂ is	7.	The	e number of lybdenum-nitroge			
	(a) $t_{2g}^{6} e_{g}^{1}$	(b) $t_{2g}^{5} e_{g}^{2}$		(a)		(b) 3	
	(c) t_{2g}^{6}	(d) $t_{2g}^{4} e_{g}^{2}$		(c)		(d) 4	
	(6) 12g				F	age 2 (Code No. : 5807
8.	cluster.	trogenise enzyme contains (b) Fe ₂ S ₂	13.	elii	e enzyme that mination reaction Lyases		·
	(a) FeS ₀	(b) Fe_2S_2				18 170 170	doreductases
	(c) Fe_4S_3	(d) Fe ₄ S ₄			Ligases low substrate		
9.	The decrease in effici at 680 nm is called as	ency of light phase reaction	14.	enz	zyme kinetics is _		
	(a) Red drop	(b) Red shift			Zero Pseudo first	(d) Sec	
	(c) Blue drop	(d) Blue shift	15		e inhibitor is rega		
10	7.00	- A	15.	_ III	e ininbitor is rega inhibiti		trate analogue in
10.	Technetium tracers	s are produced from		(a)	Irrreversible	(b) Nor	n competitive
	(a) MnO ₄ 2·	(b) MoO ₄ ² ·		(c)	Competitive	(d) Un	competitive
	(c) Cr ₂ O ₇ ² ·				PART B —	$5 \times 4 = 20 \text{ ma}$	arks)
11.	Over treatment of exc	 (d) OsO₄²· ess of zinc leads to deficiency 	, .	Ansv E	wer ALL question ach answer shou	s, choosing e ld not exceed	ither (a) or (b). 250 words.
	of	16.	. (a)	Write a note on	bacterial iro	n transport.	
	(a) Haemoglobin	(b) Manganese				Or .	
	(c) Copper	(d) Myoglobin		(b)	Discuss the str	ucture and fu	nction of SOD.
12.	The kinetics of oxidation vanadium(v) is	tion of antidiabetic drug byorder reaction.	17.		Give a brief haemoglobin ar	account	of physiology
	(a) Zero	(b) Second				Or	
	(c) Third	(d) First		(b)	Write a note on	cyanide pois	oning.
	Pa	ge 3 Code No. : 5807	N			Page 4	Code No. : 580

The geometry of zinc in carbonic anhydrase is

(b) Distorted trigonal bipyarmid

(a) See-Saw

(c) Tetrahedral

18. (a) Explain the role of magnesium in the structure of chlorophyll.

Oı

- (b) Write a note on fixation of nitrogen by molybdenum and titanium complexes.
- (a) Write a note on vanadium compounds as antidiabetic drugs.

Or

- (b) Give a brief account on toxicity and remedies of the elements Zn, Cd, Hg and Pb.
- (a) What is V_{max}? How will you determine it? Write its significance.

Or

(b) What is Lineweaver- Burg plot? Sketch and explain the Lineweaver-Burg plots various reversible inhibitions.

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b) Each answer should not exceed 600 words.

21. (a) Explain the structure and processes involved in the storing of iron by ferritin.

Or

(b) Discuss the structure and functions of Vitamin B_{12} .

Page 5 Code No.: 5807

- 22. (a) Write a note on
 - Structure and catalytic cycle of cytochrome P₄₅₀
 - (ii) Structure and function of hemocyanin.

Or

- (b) Write a note on dioxygen binding of haemoglobin and hematin.
- 23. (a) Explain the structure of dinitrogenase complex and its role in the fixation of nitrogen.

Or

- (b) Explain the electron transport sequence of Photosysnthesis.
- 24. (a) Write a note on role of chelation theraphy in the treatment of iron overload and cancer.

Or

- (b) Write a note on different imaging agents.
- 25. (a) Derive Michaelis menten equation

Or

(b) Write a note on effect of metal activators and substrate concentration on the efficiency of enzyme.

Page 6 Code No.: 5807