Code No.: 5764 Sub. Code: WMAE 22		Sub. Code: WMAE 22		(n) e^{α}	(b) $E(e^{ix})$	
				(c) $E(xf(x))$	(d) $E(X)$	
M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2024.			4.	The mean of a binomial distribution having m.g.f. as $(.5 + .5e^t)^7$ is		
	Second	Semester				
	Matl	nematics		(a) 7/2 (c) 3.5	(b) 2.6	
Elective III — MATHEMATICAL STATISTICS			F		(d) 7/5	
(For those who joined in July 2023 onwards)			5.	The value of the co	onditional probability $P(A \cap B)$	
				(a) $P(A)P(B)$ if A	A and B are independent events. (b) $P(A)+P(B)$	
11me	: Three hours	Maximum : 75 marks		(c) $P(B)/P(A)$	(d) $I(A) + P(B)$	
		$5 \times 1 = 15 \text{ marks}$	6.		5. 5	
Answer ALL questions. Choose the correct answer :				stochastically independent if and only if		
1.		igns to each element $c \in \mathcal{C}$ one		$//(x_1, x_2) = $	·	
		number $X(c) = x$ is called a		(a) $f_1(x_1)$	(b) $f_1(x_1)f_2(x_2)$	
	variabl			(c) $f_2(x_2)$	(d) $f_1(x_2)$	
	(a) real (c) random	(b) complex (d) constant	7.	If $(1-2t)^{-6}$, $t<1$.	/2 is the moment generating	
2.	The value of $Pr(S)$ is where S is the		*:	function of a random variable then its variance is		
	sample space.			(a) 3	4× 10	
	(a) 0	(b) 8		(c) 24	(b) 12	
	(c) 1	(d) 4		(6) 24	(d) 5 Page 2 Code No.: 5764	
					Tage 2 Code No.: 3704	
		· · ·		And heavener	EU Es Pillingo en estado pro terro mort	
				25.7		
8.	The formula for \overline{X} is		12.	Determine the	constant c so that	
	n V	ΣX		$f(x) = cx(1-x)^3$, $0 < x < 1$, 0 elsewhere for the beta		
	(a) $\frac{\sum X_i}{2n}$	(b) $\frac{\sum X_i}{n}$		distribution.		
	ΣX_i	$\Sigma x X$.	×	(a) 1	(b) 9	
	(c) $\frac{2n}{4n}$	(d) $\frac{2.t A_i}{n}$		(c) 20	(d) 4	
			13.	If $\lim_{n\to\infty} F_n(y) = 1$	F(y) for every point y then the	
9.	The m.g.f. of a normal distribution is $e^{3t+\frac{36t^2}{2}}$ then			random variable	Y _n is said to have a	
	the standard deviation			distribution with	distribution function $F(y)$.	
	(a) 4	(b) 6		(a) one to one	(b) cauchy	
	(c) 1	(d) 3		(c) limiting	(d) continuous	
10.	If F have an Edictuil	in the second	14.	A distribution fur	nction of discrete type which has	
1.00	If F have an F distribution with parameters r_1 and r_2 then $1/F$ has an F distribution with				1 at a single point is called as	
	parameters	s an F distribution with			ribution. (b) elements	
		(b) $r_1.r_2$		(a) inventory (c) cube	(d) degenerate	
1.1	(c) r_2 and r_1 (d) $1/r_2$		15.	degenerate then t	ribution of a random variable is the random variable is said to be the constant that has the	
11. The variance S^2 of n random variables X_1, X_2, X_n is				probability of 1.	DITO CONTOURNE	
	(a) $\sum_{i=1}^{n} (X_i - \overline{X})^2 / n$ (b) $\sum_{i=1}^{n} (X_i - \overline{X})$			(a) converge stock	hastically	
				(b) diverge stocha	astically	
	(c) $\sum^{n} (x - \overline{y})^{3}$	(d) $\sum_{i=1}^{n} (X_i + \overline{X})$		(c) both (a) and (b) -	
	$\angle_{i=1}(\alpha_i - A) / n$	(a) $\sum_{i=1}^{n} (X_i + \overline{X})$		(d) neither (a) no	r(b)	
				(a) notifier (a) no.	1 (0)	

(8 pages)

Reg. No. ;

The moment generating function M(t) is defined

(a) e^{α}

PART B - (5 × 4 = 20 marks) Answer ALL questions, choosing either (a) or (b).

(a) Let X denote the random variable with E(X)=3 and $E(X^2)=13$ then find the lower bound for Pr(-2 < X < 8) using Chebyshev's inequality.

- (b) Let X have the p.d.f. $f(x) = \frac{1}{2}(x+1), -1 < x < 1$. 0 elsewhere. Find the mean and variance of X.
- (a) Derive the m.g.f. of Binomial distribution and hence find the mean and variance of the distribution.

Or

- (b) Let X_1 and X_2 have the joint p.d.f. $f(x_1, x_2) = 2$, $0 < x_1 < x_2 < 1$. conditional p.d.f. of X_1 given $X_2 = x_2$.
- (a) If $(1-2t)^{-6}$, t<1/2 is the moment generating-18. function of the random variable X then find $\Pr(X < 5.23)$.

(b) Let X be $\chi^2(10)$. Find $\Pr(3.25 \le X \le 20.5)$. Find a Pr(a < x) = 0.05 $\Pr(X \le a) = 0.95.$

> Page 5 Code No.: 5764

22. (a) Let X_1 and X_2 have the joint p.d.f. $f(x_1, x_2) = \frac{x_1 + x_2}{21}, \quad x_1 = 1, 2, 3, \quad x_2 = 1, 2, 0,$ elsewhere. Find the marginal p.d.f. of X_1 and X_2 hence find $Pr(X_1 = 3)$ and $Pr(X_2 = 2)$.

- (b) Let the random variables X_1 and X_2 have the joint p.d.f. $f(x_1, x_2)$. Then prove that X_1 and X_2 are stochastically independent if and only if $f(x_1, x_2)$ can be written as a product of a non negative function of x_1 along and a non negative function of x_2 alone.
- (a) Derive the moment generating function of the 23. normal distribution.

- (b) If the random variable X is $n(\mu, \sigma^2)$, $\sigma^2 > 0$ then prove that $V = (x - \mu^2)/\sigma^2$ is $\chi^2(1)$.
- 24. (a) Derive t distribution.

(b) Let Y_1 , Y_2 , Y_3 be the order statistics of a random sample of size 3 from a distribution having p.d.f. f(x)=1, 0 < x < 1, 0 elsewhere. find the p.d.f. of $Z_1 = Y_3 - Y_1$.

> Page 7 Code No.: 5764

(a) Let \overline{X} be the mean of the random sample of size 25 from a distribution that is n(75, 100). Find $pr(71 < \overline{X} < 79)$.

Or

- (b) Let F have an F distribution with parameters r_1 and r_2 . Prove that 1/F has an Fdistribution with parameters r_2 and r_1 .
- (a) Let Y_n denote the *n*th order statistic of a random variable from the $f(x)=1/\theta$, $0 < x < \theta,$ distribution with $0 < \theta < \infty$ else. Prove that $Z_n = n(\theta - Y_n)$ has a distribution with distribution function G(z).

(b) Let Z_n be $\chi^2(n)$. The m.g.f. of Z_n is $(1-2t)^{-n/2}$, t<1/2. Investigate the limiting distribution of the random $Y_n = (Z_n - n)/\sqrt{2n} .$

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

21. (a) Let X have the p.d.f. f(x) = x + 2/18, -2 < x < 4, 0 elsewhere. Find $E(X+2)^3$ and $E(6X-2(X+2)^3).$

(b) State and prove Chebyshev's inequality. Code No.: 5764 Page 6

(a) State and prove Central limit theorem.

Or

(b) Let $F_n(y)$ denote the distribution function of a random variable Y, whose distribution depends on the positive integer n. Let c denote a constant which does not depend upon n. Prove that the random variables Y_n converges stochastically to the constant c if and only if for every $\varepsilon > 0$ $\lim_{n \to \infty} \Pr(y_n - c < \varepsilon) = 1$.